Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Ä¡±ÙÁ¢ÃËÀÌ ¸¶ÀÌÅ©·Î ÀÓÇöõÆ® ÀÎÁ¢°ñ ÀÀ·Â¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ À¯ÇÑ¿ä¼ÒÇؼ®

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant

Korean Journal of Orthodontics 2011³â 41±Ç 1È£ p.6 ~ 15
À¯¿øÀç, ±è¹Ì·É, ¹ÚÈ¿»ó, °æÈñ¹®, ±Ç¿À¿ø,
¼Ò¼Ó »ó¼¼Á¤º¸
À¯¿øÀç ( Yu Won-Jae ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
±è¹Ì·É ( Kim Mi-Ryoung ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
¹ÚÈ¿»ó ( Park Hyo-Sang ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
°æÈñ¹® ( Kyung Hee-Moon ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
±Ç¿À¿ø ( Kwon Oh-Won ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç

Abstract

¸¶ÀÌÅ©·Î ÀÓÇöõÆ® ½Ã¼úÀÇ Áß¿äÇÑ À§Çè¿äÀÎ Áß Çϳª·Î Ä¡±ÙÁ¢ÃË ¹®Á¦°¡ ÀÖÀ¸³ª, °ü·Ã ¿¬±¸´Â °á°ú ºÐ¼®¿¡ Ä¡ÁߵǾî ÀÖ°í, Ä¡±ÙÁ¢ÃËÀÌ ¸¶ÀÌÅ©·Î ÀÓÇöõÆ® ¾ÈÁ¤¼º »ó½Ç·Î À̾îÁö´Â ±âÀü¿¡ ´ëÇÑ ¿¬±¸´Â ¾ÆÁ÷ ¹ÌÈíÇÑ °ÍÀ¸·Î º¸ÀδÙ. ÀÌ¿¡, º» ¿¬±¸¿¡¼­´Â »ý¿ªÇÐÀû Ãø¸é¿¡¼­ ±× ¿µÇâÀ» ºÐ¼®ÇÏ¿´´Ù. Absoanchor ¸¶ÀÌÅ©·Î ÀÓÇöõÆ®(SH1312-7, Dentos Inc., Daegu, Korea) ÷ºÎ°¡ Ä¡±Ù¿¡ Á¢Ã˵Ǿî ÀÖÀ» ¶§, ÀúÀ۾РÀü´Þ¿¡ ÀÇÇÑ ¸¶ÀÌÅ©·Î ÀÓÇöõÆ® º¯À§°¡ ÀÎÁ¢°ñ¿¡ °¡ÇÏ´Â ¾ÐÃàÀÀ·ÂÀ» Ãà´ëĪ À¯ÇÑ¿ä¼Ò¸ðµ¨À» »ç¿ëÇÏ¿© °è»êÇÏ¿´´Ù. ¿ä¼Òº° ÀÀ·ÂÀÌ Çظé°ñÀÇ ÃÖ´ë¾ÐÃà°­µµ³ª, Ä¡¹Ð°ñÀÇ ºñÁ¤»ó °ñ°³Á¶ ÀÓ°èÀÀ·ÂÀ» ³ÑÀ» °æ¿ì ÇØ´ç ¿ä¼Ò¸¦ ¼øÂ÷ÀûÀ¸·Î Çؼ®¸ðµ¨¿¡¼­ Á¦°ÅÇÏ¸ç ½ÇÇàÇÑ 6´Ü°èÇؼ®ÀÇ °á°ú, ¸¶ÀÌÅ©·Î ÀÓÇöõÆ®¿¡ ÀÎÁ¢ÇÑ Çظé°ñÀÇ ÀüüÀûÀÎ ÆÄÀý°ú °úºÎÇÏ¿¡ µû¸¥ Ä¡¹Ð°ñÀÇ ºñÁ¤»ó °ñ°³Á¶°¡ ÀÓÇöõÆ® ÁöÁö·Â »ó½Ç¿¡ ÁÖ¿äÀÎÀÌ µÉ °ÍÀ¸·Î Æò°¡µÇ¾ú´Ù. Ä¡¹Ð°ñÀÇ °úºÎÇÏ ¿µ¿ªÀº Ãʱ⿡´Â Ä¡¹Ð°ñÆÇÀÇ ÇϺο¡ Á¸ÀçÇÏ¿´À¸³ª »óºÎ·Î È®ÀåµÇ¾ú°í, ÀÀ·Â ÀçºÐÆ÷·Î ÀÎÇÑ °¨¼ÒÈ¿°ú ¾øÀÌ ¾ç¼º µÇ¸ÔÀÓ(positive feedback)À¸·Î °á±¹ Ä¡¹Ð°ñ Àü µÎ²²·Î È®´ëµÊÀ» °üÂûÇÏ¿´´Ù. º» ¿¬±¸¸¦ ÅëÇØ Ä¡±ÙÁ¢ÃËµÈ ¸¶ÀÌÅ©·Î ÀÓÇöõÆ®°¡ ÀÎÁ¢°ñÀ» ÈѼսÃÄÑ ¾ÈÁ¤¼º »ó½Ç·Î À̾îÁö´Â °úÁ¤À» ¸ð»çÇÒ ¼ö ÀÖ¾úÀ¸¸ç, À̷κÎÅÍ Ä¡±ÙÁ¢ÃË¿¡ µû¸¥ ¸¶ÀÌÅ©·Î ÀÓÇöõÆ®ÀÇ ºÒ·®ÇÑ ¿¹ÈÄ¿¡ ´ëÇÑ »ý¿ªÇÐÀû Ãø¸éÀÇ ¿øÀÎÀ» ÆľÇÇÒ ¼ö ÀÖ¾ú´Ù.

Objective : The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant.

Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant.

Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged.

Conclusions : Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Å°¿öµå

¸¶ÀÌÅ©·Î ÀÓÇöõÆ®; Ä¡±ÙÁ¢ÃË; ÀÓÇöõÆ® ÀÎÁ¢°ñ ÀÀ·Â; À¯ÇÑ¿ä¼ÒÇؼ®
Microimplant; Root contact; Peri-implant bone stress; Finite element analysis

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

   

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed